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Waves in excitable media can be treated by a simple geometric theory. The propagation
velocity is assumed known and evolution of wave fronts is determined by elementary physical
principles (Fermat’s principle, Huygens’ principle). Based on this geometric theory a fast
computational method is developed. By this method the distorting effect of the spatial grid
is avoided. The method is applied to the cases when a circular obstacle is surrounded by a
homogeneous and heterogeneous medium, respectively. The numerical simulations show that
the method is convenient, fast and reliable.
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1. Introduction

Wave phenomena are widely studied and applied in different fields of natural sci-
ences. The definition of wave is not uniformly accepted: there are various approaches
(propagation of disturbances, propagation of energy, periodic spatio-temporal processes,
solutions of the wave equation, etc.). Here we will use the term “wave” for a spatio-
temporal process described by a function of the form

u(t, r) = A(r)f
(
t − S(r)

)
. (1)

Heret is the time,r is the position vector,A is the amplitude,f is the phase, andS is the
eikonal. This terminology is in accordance with that one commonly used in the special
case of harmonic waves (whenf is sinusoidal function of its argument).

The form (1) describes an undistorted propagation of a signal. IfA is not constant,
then the signal is simply attenuated. The eikonalS measures the time needed for the
propagation. Thus the time dependence will be essentially the same at every pointr,
except of the attenuation (characterised byA) and the time delay (measured byS).

Wave fronts are the equieikonal surfaces:

S(r) = constant.
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Travelling waves are represented by propagating fronts. That means a continuous trans-
formation of the wave fronts into themselves. Evolving fronts or in other words “moving
interfaces” occurs in very wide variety of applications. Fast Marching Method, intro-
duced by Sethian (1996) and Level Set Method, introduced by Osher and Sethian (1988)
are numerical techniques designed to track the evolution of interfaces. For details of
these methods, and the possible fields of applications (geometry, fluid dynamics, shape
recovery in image processing, semiconductor manufacturing, and so on) see the book [1].

Wave functions (1) are often presented as solutions of partial differential equations.
In our case chemical waves are solutions of certain reaction–diffusion equations in an
“excitable” medium [2–4].

There are two traditional approaches for computer simulations of chemical waves:

(i) application of cellular-automaton models [5],

(ii) numerical solution of the reaction–diffusion equations [6].

A common problem of the above approaches is the spatial grid. The actual front is
the set of points in a special state, and it is difficult to eliminate the distorting effect of
the grid. A further problem is that numerical solving of the reaction–diffusion equations
is time-consuming. Our new method is based on the geometric theory of waves. It does
not require the numerical solution of any differential equation and hence it enables us to
construct a fast method.

2. The geometric theory

In many simple cases of wave propagation the amplitude has no significant role, it
can be considered constant. The process of propagation can be treated without involving
the amplitude. In the geometric theory of waves we define rays and fronts, we study the
evolution of fronts provided that the wave speedv is given as a function of position vec-
tor r [7,8]. The geometric theory is based on Fermat’s principle of the least propagation
time.

Let us take two points in the excitable medium, and letg be a curve with the
endpointsA andB. The propagation time belonging tog will be denoted byt (g(A,B)),
that is

t
(
g(A,B)

) = ∫
g

1

v(r)
ds.

A curve is calledFermat rayor extremal if there is no other curve with same end-
points having less propagation time. This Fermat ray belongs to a pair of points, namely
the endpoints. Now we generalise the concept of Fermat ray for the case when the ini-
tial point is not fixed, but it is an arbitrary point of a given initial setH . The Fermat
ray between the initial setH and an endpointB is defined as follows. Consider all the
propagation times of the Fermat rays belonging to varyingA and fixedB, whereA ∈ H ,
and select the one to which the propagation time is minimal [8]. We refer to it as the
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Fermat ray betweenH andB. In generic case, there is a unique Fermat ray between a
point pair or between a set and a point. However, there may be exceptional cases, when
several different Fermat rays belong to a point pair or a given set and a point (singularity
theory [7]).

Now let H be the initial frontF0, and let the endpointB be arbitrary. This way
a family of Fermat rays is generated. The subsequent wave fronts are the orthogonal
trajectories of that family of Fermat rays starting from the initial frontF0.

Sieniutycz elaborated the exact formulation of the geometric wave theory in frame
of variational calculus for inhomogeneous and anisotropic medium when the velocity
depends on space and direction [9].

Sainhas and Dilao numerically studied the solutions of reaction–diffusion equa-
tion for the Brusselator model and they deduced the validity of the elementary laws of
geometrical optics [10]. His results showed that the reaction–diffusion theory was in
agreement with the geometrical wave theory in that special case.

The first application of the geometrical approach to biology goes back to Wiener
and Rosenblueth [11]. They constructed a model to the propagation of excitations in
nerve system and cardiac muscle.

These waves of excitations in biology are very similar to the chemical waves.
A simple analogue, which illustrates the most striking character of chemical waves, is
the process of prairie fire. Starting from an initial burning front, the process is easily
predicted if the velocity of propagation is known.

Our aim was to develop a fast computer program to simulate travelling waves in
excitable media based on the geometric theory. The main goal was to eliminate the
distorting effect of the spatial grid.

3. Description and application of the method

3.1. Modelling of the active medium, front and obstacle

In this model the unit of time is step number, and the unit of length is pixel. The
excitable media is modelled with a 2-dimensional (x–y)-lattice (matrix) calledprairie,
where these bytes represent the state of the excitable media in that point, and when
drawing on the screen one byte determines the colour of one pixel. A point of the media
can have three possible states:

• Obstacle state: the wave cannot pass through these points, and they keep their
state during the whole simulation.

• Resting state: the wave can pass through these points and after that the state
of point changes to refractory state. (Evoking the prairie fire analogue, this
operation is called burning. However, the duration of the burning is regarded to
be zero here, there is no “burning” state in our model.)

• Refractory state: the wave cannot pass through these points. While burning,
a point in resting state changes to refractory state, and after timeT (recovery
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Figure 1. The LFD structure and the front modelled as a linked list of LFDs. This figure shows a front
around an obstacle.

time) the point will change back to resting state again. The latter stage of the
process is called recovering according to the prairie fire terminology.

The recovery algorithm needs the last time (number of steps) when a point turned
to the refractory state. These times are stored in an other matrix, calledlast time matrix.
This matrix is indexed in the same way as the prairie matrix.

In our model the wave front is not the set of points in a special state, it is stored
separately from the prairie, and it is a linked set of local front determinators. Alocal front
determinator(LFD) is a structure, which contains the coordinates of the wavepoint in
the present and in the preceding step (here we use the terminology:point means a point
of excitable media, andwavepointmeans a point of front), pointers to the previous and
next LFD, and a status byte indicates whether the LFD is on the end of one continuous
part of the front (it isbreakpoint) or not. The front is an ordered, linked list of LFDs
(see figure 1), so they determinate the actual shape of the front. The distance of their
present coordinates is kept between two given values. It is important that the coordinates
of the wavepoints are floating point numbers. This way we can eliminate the spatial grid
together with its distorting effect from the front calculations. Rounding is necessary only
when the front is drawn on the screen (see figure 2).

Applying the Fermat’s principle one wavepoint moves perpendicularly to the front
with a speed determined by the velocity field (a givenv(x, y) function). The orientation
of the front is defined by the list. This orientation selects between the two possible
directions of wave propagation in such a way that the direction of the wave propagation
and the direction of the orientation form a right-hand system. Inhomogeneous media
can be described with a non-constant velocity field. (The model can be applied for
anisotropic media as well but here we regard the isotropic case only.)
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Figure 2. The active medium and the wave front. One square represents one point of the prairie. The white
squares are in resting state, the dark grey squares are in refractory state. The wavepoints (black points) are

drawn to the light grey squares. The black squares are in obstacle state.

3.2. Start of the simulation

3.2.1. Back to the default state
Before a new simulation is started the previous wave fronts (if there was any) is

deleted from the memory. Then the prairie is filled with resting state points, except for
the edges of the prairie, where one pixel wide border is created from obstacle points.
This way any previous obstacle is also deleted. The last time matrix is filled with zeros,
and the step number is also zero.

3.2.2. Preparing the new obstacles and an initial front
The program allows us to change the velocity field (v(x, y) function).
The border curve of an obstacle can be given by two functionsyi(x) (i = 1,2) in

the region[x1, x2]. The points of the prairie between these two boundary curves will be
in obstacle state.

For convenient the actual initial front is given here by a functionx(y) given on a
certain interval[y1, y2]. In this interval new LFDs are created. The presenty coordinates
of these wavepoints are stored withy started from the low limit and stepping by one
pixel, and thex coordinates are stored with thex(y) values. The preceding coordinates
also assume these values. After that the front is ordered (see section 3.3.4).

3.3. One step of the simulation

3.3.1. Overview
In one step the following operations should be performed:

(1) Recovery: any point, which has spentT (recovery time) in the refractory state,
changes its state to resting.
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(2) Moving of the front: going along the linked list every LFD is moved perpen-
dicularly to the front.

(3) Ordering the new front.

(4) Quadrangle burning: the points are changed from resting state to refractory
one in a quadrangle determined by two neighbouring LFDs present and pre-
ceding coordinates.

(5) Circle burning: the points change their state to refractory one in a circular
range around a wavepoint at the breakpoints of the front.

(6) Drawing.

(7) Increasing the step number.

3.3.2. Recovery
The state of a point is characterised by a number: 1 represents the resting state and

0 the refractory one. The program checks all of the prairie’s points, and if one point is
found in refractory state, then the new state of the point is�(t − t0− T ), whereT is the
recovery time(it can be given by the user),t is the actual step-time, andt0 is picked up
from the last time matrix, which stores the step number when the point changed its state
to refractory, and� is the unit step function

�(x) =
{

1, if x � 0,
0, if x < 0.

This method can be generalised allowing additional possible states between the
refractory and resting state. Then instead of� another recovery function should be
used. Wiener and Rosenblueth [11] used the concept ofepoch numberto characterise
the stages of the refractory state.

3.3.3. Moving of a LFD
The LFD is moved perpendicular to the front with an extent determined by the ve-

locity field (a givenv(x, y) function). Calculating of the perpendicular direction needs
the derivative of the front in the actual point. To calculate it, quadratic Lagrange in-
terpolation is done to the actual, previous and next LFDs. If the actual LFD is at one
end of a continuous part of the front, then interpolation is done to the actual, and the
two previous (or next) LFDs. If a continuous part contains only two LFDs, then linear
interpolation is applied, and if it contains only one LFD, then it moves horizontally. To
increase the accuracy, if thex-projection of the interval containing these points is bigger
than they-projection, then the interpolation is done as any(x) function, otherwise as an
x(y) function.

From the coefficients of the interpolation polynomial the approximating value of
the derivative in the actual wavepoint is calculated. From that, the perpendicular unit
vector (direction vector, calledi) is calculated by using the right-hand convention (in
section 3.1).
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Figure 3. Moving of LFDs. 1: first step, 2: second step.

Then the coordinates of the present wavepoint are copied to the coordinates of the
preceding wavepoint. After that, the direction vector is multiplied by the extent of the
moving (see later) and then it is added to the coordinates of the present wavepoint to
produce its new values.

Because of this wavepoint changing method, when interpolation is calculated, the
coordinates of previous wavepoints are picked up from preceding wavepoint of the pre-
vious LFD, and the coordinates of the actual and next wavepoints are picked up from the
present wavepoints of their LFDs (see figure 3).

To calculate the progress of one wavepoint, first the value of the velocity function is
evaluated in the present wavepoint of the actual LFD, and is compared with the velocity
in the point after the calculated progress. If these values are not equal, or the option
“always fine moving” is active then progress is calculated as an integral. (The “always
fine moving” option is useful for example in the case when the velocity periodically
changes.) Then the new coordinates are

xk(t) = xk(t0)+ ik

∫ t

t0

v
(
xk
(
t ′
))

dt,

wherek is the index of the vector components (k = 1,2, x andy components),i =
(i1, i2) is the direction vector,t0 is the actual time andt is the time of the new wavepoint,
in this modelt = t0+ 1. The above expression should be approximated with the sum:

xk(t) = xk(t0)+ ik

n∑
j=1

v
(
xk
(
t0+ (j − 1)�t

))
�t,

where�t = 1/n, andn is a variable parameter calledfine step number.
Having calculated the new wavepoint, the pathway of propagation is checked;

whether there is a point on it in refractory or in obstacle state. If the answer is yes, then
the LFD stay on the last point in resting state and its status byte changes to breakpoint
status.
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3.3.4. Ordering
The aim of ordering is to keep the density of LFDs in the neighbourhood of a given

value in the case of expanding or contracting fronts. An additional aim is to delete LFDs
if neighbouring ones are in the breakpoint status. This occurs when the front collides
to an obstacle. In this case the colliding points are marked as breakpoint, and they are
deleted from the list except the first one. The remaining LFD in breakpoint status marks
that the front is broken between the breakpoint and the next LFDs.

To execute the ordering, the program goes through the LFDs, and with each one
the following checks and modifications are done:

(1) If both actual and next LFDs are in breakpoint status, then the actual LFD is
deleted, and the check continues with the next LFD.

(2) While the distance of actual and next LFD is bigger than a prescribed value
(calledmaxdist), new LFD is created between them. To create it quadratic La-
grange interpolation is used in the same manner as described in section 3.3.3.
The coordinates of the new wavepoint are created so, that the independent vari-
able of the interpolation is the mean of the old wavepoints same coordinates,
and on other coordinate is the value of the interpolation polynomial on the
previous place.

(3) While the distance between the actual and next LFD is smaller than a pre-
scribed value (calledmindist), and the distance between the actual LFD and
the one after the next is smaller than the value ofmaxdist, the next LFD is
deleted.

(4) If the actual LFD is in breakpoint status, and it is nearer to the next LFD
as a prescribed minimum distance, then the actual point will be no more in
breakpoint status. (The two front parts grow together.)

3.3.5. Quadrangle burning
The quadrangle burning changes the points on the area where the front passed

through, from resting state to refractory. To realise this, the program goes through the
LFDs, and the points in resting state change their state to refractory one in a quadrangle
determined by the present and preceding coordinates of the actual and the next LFDs.

3.3.6. Circle burning
Circle burning yields circular front parts at the breakpoints. In homogeneous me-

dia these front parts are exact circle arcs, but in nonhomogeneous media they are not
necessarily. This procedure makes it possible that two front parts, which are separated
by the obstacle, reunite again after passing by the obstacle.
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Figure 4. Circle burning. In this example the angleϕ is positive. The small triangle at the centre is the
preceding wavepoint of the breakpoint, the small circle is its present wavepoint, the squares are the new

LFDs, but only the filled ones stay in the list, the empty ones are deleted in the procedure of moving.

The coordinates of new LFDs are calculated by rotating the present coordinates of
the breakpoint around its preceding coordinates. The rotation angleϕ is calculated from
the formula:

ϕ =




mindist+maxdist

2r
, if it is smaller than

π

2
,

π

2
, otherwise,

wherer is the distance between the present and preceding wavepoints of the breakpoint,
mindist and maxdist are defined in section 3.3.4. In homogeneous mediumr is the radius
of the circle arc on which the present wavepoints of the new LFDs are.

We repeat the rotation untiln times, wheren = int(2π/ϕ). After a rotation the pre-
ceding wavepoint of the new LFD will be the same as the breakpoints one. To calculate
the present wavepoint, a modified version of LFD moving (section 3.3.3) is used. Here
the direction (i vector) is calculated by rotating the present wavepoint of the breakpoint
around the preceding wavepoint of it with an angle extentjϕ, wherej is the number of
rotations(j = 1, . . . , n). The sign of the angle depends on the location of the break-
point. If it is in a beginning of a continuous front part, the angle is negative (clockwise),
and if it is in the end of it, the angle is positive (anti-clockwise). Having thei vector,
the moving continues as described in section 3.3.3., so this method works well also in
nonhomogeneous media (see figure 4).

After the new LFDs were created, the program goes through the new LFDs, and
the points in resting state transform into refractory state in a triangle determined by the
present and the common preceding coordinates of the actual and the previous LFDs,
respectively.

Circle burning is done only after the second step of simulation in order to prevent
propagation backward. After the second step the set of the points in refractory state
behind the front is thick enough to prevent backward propagation.
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3.3.7. Drawing
The program goes through the points of the prairie to check their states. The colour

of the corresponding pixel is determined by the state of the point.
Next, the program goes through the LFDs, round their present coordinates, and

changes the colour of the corresponding pixel red. The(i, j) pixel is the corresponding
pixel of any wavepoint in the interval[i − 0.5, i + 0.5), [j − 0.5, j + 0.5).

4. Results and discussion

4.1. Computations

We have simulated chemical waves in uniform and nonuniform membranes rotat-
ing around an obstacle (a hole in the membrane). Theoretical and experimental studies
on such waves have already been published [8,12–15]. The experimental wave fronts
show a good agreement with the theoretical predictions based on the geometric theory
of waves: the wave fronts were involutes of the obstacle [12,13] (figure 5 shows in-
volutes of a circle). Remark that the curvature effect [16,17] was negligible in those
experiments.

Figure 6 compares the experimental results [18] with the present simulations
for waves rotating around a circular obstacle. The numerical parameter values are:
mindist= √0.9, maxdist= √2.5 (see in section 3.3.4) and the fine step number (see
in section 3.3.3)n = 25 in all simulations. Some physical parameters, and their val-
ues were varied, such as theT recovery time,R0 obstacle radius,Rl limit radius (it is
the radius of the membrane),v velocity of propagation (in homogeneous media). In
heterogeneous media there are some additional physical parameters:Ri interface radius

Figure 5. Involutes of a circle.
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Figure 6. The experimental (on the left column) and simulated (right column) results: (a) Homogeneous
medium, (b) Heterogeneous medium, symmetric arrangement, minimal loop is the obstacle, (c) Heteroge-
neous medium, symmetric arrangement, minimal loop is the interface, (d) Heterogeneous medium, asym-
metric arrangement, minimal loop is the obstacle, (e) Heterogeneous medium, asymmetric arrangement,
minimal loop is the interface. The breakpoint in the front moves on the interface. However, in case of
asymmetric arrangement (d, e) there is a second breakpoint, which moves partly on the circlek inside of
the inner region. This circle is called caustic, and in our case it is the envelope of the rays departing inward

from the interface with the critical angle of the total reflection. For details, see [9].
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(this interface separates the media an inner slower annular region and an outer faster
one),vs velocity in the inner slower region,vf velocity in the outer faster region andd
distance between the centres of the obstacle and the interface, respectively.

For figure 6, the parameter values are:

(a) Homogeneous medium:T = 25,R0 = 20,Rl = 100,v = 0.5.

(b) Heterogeneous medium, symmetric arrangement, minimal loop (the closed
path requiering shortest circumference time around the obstacle, see [14,15])
is the border of obstacle:T = 20,R0 = 25,Ri = 75,Rl = 125, vs = 0.5,
vf = 1.0, d = 0.

(c) Heterogeneous medium, symmetric arrangement, minimal loop is the inter-
face:T = 20,R0 = 25,Ri = 75,Rl = 125,vs = 0.5, vf = 2.0, d = 0.

(d) Heterogeneous medium, asymmetric arrangement, minimal loop is the obsta-
cle: T = 20,R0 = 25,Ri = 75,Rl = 125,vs = 0.5, vf = 1.25,d = 35.

(e) Heterogeneous medium, asymmetric arrangement, minimal loop is the inter-
face:T = 20,R0 = 25,Ri = 75,Rl = 125,vs = 0.5, vf = 1.7, d = 35.

4.2. Comparison with analytical predictions

In the case of homogeneous annular media, we made some quantitative study. In
this case the wave front is an involute of a circle, and its equation is known in polar
coordinates:

ϕ(r) = α0±
[√(

r

R0

)2

− 1− arccos

(
R0

2

)]
, (2)

whereR0 is the radius of the circle andα0 is the angle where the involute starts (see
figure 5).

We can fit an involute to the present coordinates of the LFDs. To fit it, we minimise
theχ2 square function:

χ2(r0, α0) =
n∑
i=1

(ϕi − ϕ(ri))
2

N
,

whereri andϕi are the present polar coordinates of the LFDs,N is the number of LFDs
andϕ(ri) is calculated from the equation (2). To minimise it, we use the Nelder–Mead
simplex method [19].

First, the fixed parameters were:Rl = 125 pixel,v = 1 pixel/step number. The
varying parameter wasR0,geo(it is the givenR0 value in the simulation). The differences
between theR0,fit fitted radius and the givenR0,geo radius (�R0) are shown in figure 7.
It is seen that�R0 is nearly constant.

Figure 8 showsR0 vs. v, whenR0 = 20 pixel.�R0 is turned to be nearly a linear
function of the velocityv.
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Figure 7. The difference between the given radius of the obstacle and the radius fitted to the calculated front
(�R0) vs. the radius of the obstacle (R0,geo).

Figure 8. The difference between the given radius of the obstacle and the radius fitted to the calculated front
(�R0) vs. the velocity(v).

These studies prove that if the numerical velocity is smaller (the time discretisation
is finer) or the obstacle radius is bigger (the spatial discretisation is finer) then the relative
error of the simulation decreases.
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All these results show that the present fast computer simulation method based on
the geometric theory of waves is a suitable tool for numerical study of chemical waves.
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